
SS-T-1-8 AD-A236 077
low AEROSPACE REPORT NO.

TR-0o090-n)

DTIC,

user-Defined Data Types
in the State Delta verification system (SDVS)

Prepared byT

J. V COOK and J. E. DONER
Computer Science and Technology Subdivision

30 September 1990 O~

Prepared for

SPACE SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND Aa1~r:/ -

Los Angeles Air Force Base s t ; oo Lea
P. Box 92960

Los Angeles, CA 90009-2960

Engineering Group

THE AEROSPACE CORPORATION
El Segundo, California /

'a ,

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

91 5 13 068

This report was submitted by The Aerospace Corporation, El Segundo, CA 90245, un-
der Contract No. F04701-88-C-0089 with the Space Systems Division, P 0. Box 92960, Los
Angeles, CA 90009-2960. It was reviewed and approved for The Aerospace Corporation by
C. A. Sunshine, Principal Director, Computer Science and Technology Subdivision. Mike
Pentony, Lt, USAF, was the project officer for the Mission-Oriented Investigation and Ex-
perimentation (MOIE) Program.

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to
the National Technical Information Service (NTIS). At NTIS, it will be available to the gen-
eral public, including foreign nationals.

This technical report has been reviewed and is approved for publication. Publication
of this report does not constitute Air Force approval of the report's findings or conclusions.
It is published only for the exchange and stimulation of ideas.

14K ~WNY_,LP USAF JNATHAN M. EMMES, Mai, USAF
OIE Project Of f.cer MOIE Program Manager

SSD/SDEFS PL/WCO OL-AH

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release:

distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

TR-0090(5920-07)-1 SSD-TR-91-08

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
The Aerospace Corporation (i applicable)

Computer Systems Division Space Systems Division

6c. ADDRESS (City State, and ZIP Code) 7b. ADDRESS (City State, and ZIP Code)
Los Angeles Air Force Base

El Segundo, CA 90245 Los Angeles, CA 90009-2960

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

I_ F04701-88-C-0089
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT ITASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (include Security Classification)

User-Defined Data lypes in the State Delta Verification System (SDVS)

12 PERSONAL AUTHOR(S) Cook, J. V; Doner, J. E.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT

FROM TO 30 September 1990 19

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse it necessary and identify by block number)

COPS U Boyer-Moore system

FIELD GROUP SUB-GROUP Computer verificationData types

SDVS
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report considers the problem of adapting SDVS to deal with computer programs that involve user-de-
fined data types. Such programs use the data types and supporting functions but typically do not have ac-
cess to details of the implementation of the data types. Some examples are presented. the solution used in
the Boyer-Moore system is discussed, and a description is given of how, with suitable modifications, that so-
lution has been implemented in SDVS.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[] UNCLASSIFIED/UNLIMITED [] SAME AS RPT. 0 DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (lnclude Area Code) 22c. OFFICE SYMBOL

D FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
AM ottier editions are obsoete UNCLASSIFIED

CONTENTS

1lAbstract Data Types 3

2 SDVS Implementation i

3 Conclusions 13

References 15

1 Abstract Data Types

Good programming style calls for dividing the programming effort into man-
ageable submodules, each of which performs separate and clearly defined
tasks. Good mathematical style calls for building a structure of intermedi-
ate results and lemmas, so as to render the proof of a major theorem clear
and ideally, short. In much the same way, the verification of programs calls
for the division of a problem into manageable subtasks. Here, the divisions
are liable to be suggested by, and operate parallel to, similar divisions made
in the programs.

An important aspect of the structuring and subdivision of computer
programs is the definition of abstract data types. These provide a system
that organizes and accesses information according to prescribed procedures,
with a concomitant enhancement of the clarity and comprehensibility of
the program. For example, a programmer can define records of various
kinds and access them according to named subfields. The superiority of this
approach to one in which all data are lumped together in an amorphous
mass is obvious, and is taught in all computer science courses.

The paradigm for the use of abstract data types is this: the structure
of the data type is defined, as are some functions for accessing it. The
specifications of the data type and its supporting functions avoid reference
to implementation details, such as whether pointers are used, where within
records certain fields are found, and so on. A separate module is created
for the purpose of implementing the abstract data type and its supporting
functions. Having created the implementation, the programmer elsewhere
avoids reference to its details, manipulating the data type and using the
supporting functions only according to the abstract, implementation-free,
specifications.

Modern programming languages are designed to encourage the program-
mer to follow this paradigm. Pascal, for example, provides facilities for
defining data types and limits access to them to predefined methods. C also
has flexible definition facilities, but it does not constrain access methods.
More recent languages such as Ada and Modula-2 offer the ability to define
"packages" containing data type implementations, while "exporting" only
the abstract part of the definitions.

We give two illustrations of abstract data type definitions. The first is

3

of a stack of integers:

typedef stack

push: [int x stack -- stack]

pop: [stack -* stack]

top: [stack -* int]

emptyStack: stack

axioms (let s:stack, x:int)

top(push(x,s)) = x

pop(push(x,s)) = s

push(x,s) # emptyStack
s # emptyStack -- s - push(top(s),pop(s))

In addition, there need to be some settings of default or error values-it is
not always clear what the correct values should be, so let us just suggest
some possibilities:

top(emptyStack) = 0 ? = error ?

pop(emptyStack) = emptyStack ?

Depending on the implementation, a newStack function for allocating
new instances of the stack data type, and an isStack(...) predicate to
recognize variables of type stack, could be necessary.

There are two obvious models for the stack structure, in which the axioms
are satisfied:

1. Stacks are sequences; push, pop, top affect first elements and Q =

emptyStack.

2. Stacks are terms in a formal language that includes function symbols

4

emptyStack and push (and others to represent integers):

emptySt ack

push(n,emptyStack)

push(no,push(ni ,push(....push(nk,emptyStack)...)))

The existence of the model shows that the axioms are consistent. 1

Not mentioned yet in this example is the fact that stacks are finite data
structures. The finiteness property is important because it justifies inductive
proofs; in fact, the assertion of finiteness is from some points of view just a
way of saying "induction works". We can suggest two good ways to reflect
the property of finiteness within a formal proof system, which in the case of
the stack data type example are as follows:

" One can add a new function that measures the size of the finite stack
and appropriate axioms for it:

size: [stack -+ int]

size(s) = 0 +-+ s = emptyStack

size(push(xs)) = size(s) + I

" Alternatively (or in addition), one can introduce a new induction rule

that expresses structural induction on stacks:

p(emptyStack) V(s) -- V(push(x,s))

(P(t)
Here, V represents any well-formed sentence, t is any term, and the
variable s does not occur free in any active hypothesis in the proof

1 Formal verification systems have to confront the problem that if the user is allowed to
specify the axioms, there is the possibility that those axioms might not be consistent. An
alternative is to allow only an automatically generated set of axioms whose consistency
C'an be guaranteed.

5

leading to W(s) --+ Wpush(x~s)). This rule is all that is required in
most proofs about stacks that do not reference the implement at ion.2

Our second example is the binary tree data structure:

typedef binaryTree

emptyTree: binaryTree

buildTree: [binaryTree x int x biriaryTree -*binaryTree]

left: [binaryTree -*binaryTree]

data: [binaryTree -~int)

right: EbinaryTree -~binaryTree]

axioms (let r,s,t: binaryTree, i: int)

emptyTree /_ buildTree(r,i,s)

left(buildTree(ri,s)) - r

data(buildTree(r,i,s)) = i

right(buildTree~r~i,s)) = s

t $4 emptyTree --+ t = buildTree(lef t(t) data(t) right (t))

left(emptyTree) = emptyTree

data~emptyrree) = 0

right(einptyTree) = emptyTree

Here again we recognize two not-very- different ways to construct models
for the axioms:

1. The least class of sequences containing () and containing any sequence
(r, i, s), where i is an integer and r, s are sequences in this class;

2 The farm given for the induction rule is one typically used by proof-theorists in dis-
cussing quantifier-free systems. A more typical form for other systems would be

W(emptyStack) Ys[ip(s) - ((push(x,s))]
VSjIP(S)

We use tlhe first form here because it is simpler. An actual implementation in SDVS
would look rather different from either form, but it would be more closely related to the
first.

6

2. The class of terms built from emptyTree and terms for integers using
the buildTree function symbol.

Finiteness can be expressed in ways similar to those for the stack data type:

" First, with a treeSize function:

treeSize: [binaryTree -) int]

treeSize(emptyTree) = 0

treeSize (buildTree (r, i,s)) =

treeSize(r) + I + treeSize(s)

" Second, with a principle of tree induction:

(emptyTree) V(s) & p(r) --+ W(buildTree(r, i, s))

'P(t)

where Wp is any sentence, i is a variable of type int and does not occur
free in p, and r, s, t are variables of type binarylree.

The tree example brings us clearly to grips with the abstractness of the
data type definitions. A typical implementation of binary trees uses a record
with a field for the data and two fields holding pointers to other binary trees
(the left and right subtrees). However, the abstract specification above
makes no mention of pointers, so that we have a binary tree data structure
in pure form. One should conceive of our specification as that which is
exported from the module implementing the binary tree data structure.

The verification problem for programs containing user-defined data types
that implement abstract data type definitions in the way we have described
divides into two phases. First, it is necessary to prove that the imple-
mentation module for the data type correctly implements it; this means
that one must prove that the axioms hold for the structure as implemented.
In the second phase, one proves the correctness of the program using the
defined data type, when this program uses only those aspects of the data
type that are exported from the definition module. This proof should
employ only the axioms given, along with the type information about the
supporting functions for the data type, and should make no reference to the
ilpleinentation.

7

The first phase, proving implementation correctness, is likely to be more
difficult, especially in view of the need to deal with pointers. The sec-
ond phase, proving the correctness of the higher-level program, seems more
tractable and is the subject of this report. We suggest that a data type
definition facility be added to SDVS, and we describe the other features that
must be added to support this facility.

In their program for Computational Logic [1], Boyer and Moore devel-
oped a formal method for introducing new user-defined data types, called
the shell principle. This specifies what functions are introduced for the
definition of a user-defined data type, and introduces an automatically gen-
erated set of associated axioms. The following is the pattern of the shell
principle:

There is a constructor function const, of n arguments;

an optional base constant base;

a recognizer function r;

accessor functions ac , ac2,...,acn;

type restrictions trI ,tr2,... ,trn; and

default values dvj,dv29. .. ,dvn.

In the tree example, the constructor is buildTree, a function of two argu-
ments; the base is emptyTree; the recognizer is a predicate isTree(...);
and the accessors are left, data, and right. The type restrictions, which
give the types of the results of the accessor functions, are binaryTree, int,
binaryTree, respectively, and thus !rnply

left: [binaryTree -- binaryTree]

data: [binaryTree -- int]

right:[binaryTree -- binaryTree]

Finally, the default values are emptyTree, 0, emptyTree for left, data, and
right, respectively.

Just as before, models of structures introduced by the shell principle are
obtained in either of two ways:

8

1. n-tuples in which the i-th term satisfies the type restriction tri; or

2. all terms built up from base using the constructor const.

Axioms for the user-defined data type are automatically generated, a
few of these being the following: 3

r(x) = T V r(x) = F

r(const(xj,....Xn)) = T

r(base) = T

base j const(x,....xn)

r(x) - ix A base - x = const(ac,. ... ,acn(X))]

Finiteness is expressed with the aid of an integer-valued function count
and the axionis

count(base) = 0
n

r(x) & x i base - count(x) = + Zcount(aci(xi))
i=1

The function count is not like the "size" and "treeSize" functions of
earlier examples. It is special in that its definition enlarges as more data
types (the "shells") are defined, and it applies meaningfully to all defined
data types; thus, if xi above is replaced by an instance of some other defined
data type with a different constructor, then count will return a value for
that also.

The type restrictions in the shell principle may take either of two forms:
a union of types ("one of") or a complement of a union of types ("none
of"). So the const function may be polymorphic. When const is applied
to objects that do not meet the appropriate type restrictions, the appropriate
default value is used instead. Likewise, the accessor functions return default
valmes wl,en applied to arguments not of the defined type.

311I,(use of r in some of these axioms is needed for a language in which variables can
rag , over other objects as well as the type I)eing defined; it could be omitted in a typed
itialion where x can he declared to have the type being defined.

9

The shell principle does not cover all conceivable user-defined data types
that implement abstract data-type definitions. In particular, it does not
allow for mutually recursive definitions, i.e., for a situation in which two
new user-defined data types are being defined, with the constructor for each
taking one or more arguments to be of the other type. Concrete exam-
ples where this actually needs to be done are rare, and it seems that the
shell principle is adequate for practical cases. However, it would not be
particularly difficult to extend the shell principle to accomodate multiple
constructors.

10

2 SDVS Implementation

The shell principle suffices for the known cases of interest, so we have made it
SDVS's paradigm for data type introduction [2]. We describe the necessary
user interface by means of an example, defining the stack type:

<sdvs. 1> createdatatype

datatype name: stack

constructor: push

arity: 2

accessortl: top

accessor#1 type is stack [arbitrary]: integer

accessor#1 default value: 0

accessor#2: pop

accessor#2 type is stack [arbitrary]: stack

accessor#2 default value: emptyStack

base: emptyStack

This is a stack of integers. It is possible to have stacks of other types
also. The system requests a name for a base constant only if at least one
of the accessors has been given a type that is the same as the one being
defined-there is no need for a base constant in the case of nonrecursive
data types.

Once the user has completed the input to the createdatatype command,
SI)VS creates the necessary new function symbols, in this case top, push,
emptystack, and stacksize. The last is not mentioned by the user, but
it is automatically supplied by SDVS; it is intended to return an integer
measure of the size of objects of the new type. Next, SDVS introduces a
set of new axioms for the functions and constants just introduced:

Datatype 'stack' created with the following axioms:

axiom stack.1 (i,s): emptystack -- push(i,s)

axiom stack.2 (a): emptystack -= s --> s - push(top(s).pop(s))

axiom stack.3 (i,s): top(push(i,s)) - i

axiom stack.4 (i.s): pop(push(i,s)) = s

11

axiom stack.5 0: stacksize(emptystack) - 0

axiom stack.6 (i,s): stacksizi(push(i,s)) - 1 + stacksize(s)

Inductive proofs about stacks can be done with the aid of the stacks ize
function.

We have presented the framework for the user interface to the new fea-
tures of SDVS entirely by means of an example: the case of the stack data

type. There are no essential differences between this and the general case.
Sometimes the general situation can be simpler: the base constant, the size
function, and the structural induction rule axe introduced only in case the
defined data type is recursive.

12

3 Conclusions

Our survey of the problem of abstract data type definitions and their re-
quirements has indicated that the Boyer-Moore shell principle is adequate
for most practical purposes. Accordingly, we have incorporated it into
SDVS.

There are possible extensions to the definition facility that might be
made, most notably one that allows mutually recursively defined data types.
Further facilities could be introduced into SDVS, especially induction rules
specially designed for new data types. Neither type of extension appears
necessary at the present stage of development.

13

References

[1] R. S. Boyer and J. S. Moore, The User's Manual for a Computational
Logic. Computation Logic, Inc., 1987.

[2] L. Marcus, "SDVS 8 Users' Manual," Tech. Rep. ATR-89(4778)-4, The
Aerospace Corporation, Sept. 1989.

15

